Изобретение относится к оптике и может быть использовано при конструировании объективов - ахроматов большого увеличения для комплектации крупносерийных микроскопов типа БИОЛАМ, БИМАМ, ЛЮМАМ.
Известны микрообъективы с ахроматическим типом коррекции, в которых основное внимание уделяется простоте конструкции при игнорировании показателей, характеризующих качество изображения, даваемого системами.
В настоящее время существует устойчивая тенденция к повышению информационности и производительности работ на микроскопе, для чего создатели микрообъективов следуют по пути повышения разрешающей способности (апертуры), улучшения качества изображения объективов за счет уменьшения значений аберрации внеосоевых пучков.
Кроме того большое распространение получил принцип независимого исправления аберраций в отдельных составных частях микроскопа. Ведутся работы по снижению в микрообъективах хроматической разности увеличении (ХРУ). Это необходимо для уменьшения окрашенности промежуточного изображения, которое препятствует эффективному использованию специальных методов микроскопических исследований, требующих размещения в этой плоскости специальных шкал, сеток, препаратов и т.п. Уменьшение же кривизны изображения необходимо для увеличения резко наблюдаемого поля зрения без перефокусирования.
Известны объективы большого увеличения, например, OX-31 02-АМ-90, ОМ-41 ОХ-32 (2), выпускаемые на ОАО "ЛОМО", которые, имея удовлетворительное качество изображения для точки на оси, не отвечают современным требованиям, по качеству изображения внеосевых точек поля зрения. Характерной особенностью указанных объективов является наличие значительной кривизны изображения 10-15 и остаточной хроматической разности увеличения (ХРУ), составляющей 2%. Объективы большого увеличения в соответствии с условиями полезного увеличения микроскопа комплектуются окуляром F=10 с линейным полем 2у=15 мм, построенном по схеме Кельнера. Большой остаточный ХРУ не позволяет увеличить линейное поле окуляра до значений 2у=18-20 мм, т.к. разработка простого по конструкции окуляра с постоянным по полю ХРУ при исправлении кривизны весьма затруднительна.
Данный недостаток совместно с большими значениями меридиональной и сагиттальной кривизны изображения снижает информационную емкость в микроскопе Q = N2S, где N - разрешающая способность объектива; S - площадь наблюдения без перефокусировки.
Известны объективы с практически исправленными ХРУ и кривизной изображения. Однако эти микрообъективы обладают иным типом коррекции (являются планапохроматами), имеют сложную конструкцию, не пригодную для крупносерийного производства. Известны также объективы, в которых снижена ХРУ и уменьшена кривизна изображения примерно в 1,5 раза.
Однако в этом случае наблюдается окрашивание изображения и в промежуточной плоскости микроскопа, а остаточная кривизна остается значительной. Кроме того, в данном объективе отсутствует возможность дальнейшего повышения числовой апертуры (разрешающей способности) до максимальных значений 1,35-1,4 масляной иммерсии. Объясняется это тем, что в нем с увеличением апертуры недопустимо возрастает сферохроматические аберрации отрицательного склеенного компонента, расположенного во фронтальной части объектива. Однако данный компонент не технологичен в условиях крупносерийного производства, что подтвердилось при изготовлении опытного образца.
Указанные недостатки проводят к снижению информационной емкости на микроскопе и не позволяют повысить производительность микроскопических исследований. Известен микрообъектив, имеющий довольно простую конструкцию, пригодную для крупносерийного производства.
Объектив содержит фронтальный компонент и второй, состоящий из двух двусклеенных линз компонент, положительные линзы которого обращены к плоскости изображения. Недостатками известного объектива являются:
Все перечисленные выше недостатки обуславливают пониженную информационную емкость, которая зависит от величины апертуры (разрешающей способности) и резко наблюдаемого без перефокусировки поля зрения.
Наиболее близким техническим решением к предлагаемому ахроматическому микрообъективу является известный объектив микроскопа [10], который так же как и заявленный содержит фронтальный компонент в виде одиночного мениска, обращенного вогнутостью к пространству предметов, две двусклеенные линзы, содержащие двояковыпуклые линзы, положительные компоненты которых обращены к пространству изображений, отрицательный мениск, обращенный вогнутостью к пространству изображений.
Однако этот объектив обладает недостаточно высокой разрешающей способностью и невысоким качеством изображения.
Основной задачей, на решение которой направлено изобретение, является повышение информационной емкости путем увеличения разрешающей способности и улучшения аберрационной коррекции.
Поставленная задача достигается предлагаемым ахроматическим микрообъективом большого увеличения, который так же как и прототип содержит фронтальный компонент, выполненный в виде одиночной плосковыпуклой линзы или в виде одиночного мениска, обращенного к пространству изображений, второй компонент, выполненный в виде последовательно установленных вдоль оптической оси двух двусклеенных линз, положительные компоненты которых обращены к пространству изображений, и третий компонент, выполненный в виде одиночного отрицательного мениска, обращенного вогнутостью к пространству изображений.
В отличие от прототипа в предлагаемом микрообъективе на расстоянии L= (0,3-0,7)f'oб от одиночного отрицательного мениска установлена материальная диафрагма, диаметр раскрытия которой равен диаметру выходного зрачка объектива, а такие для одиночного мениска выполняются соотношения:
Сущность изобретения заключается в том, что выполнение и расположение отрицательного мениска по предлагаемому изобретению устраняет хроматические аберрации и уменьшает кривизну микрообъектива. В результате происходит одновременное исправление монохроматических и хроматических аберраций, при этом исправление монохроматических аберраций приводит к возможности увеличения апертуры (разрешавшей способности), а уменьшение кривизны изображения позволит увеличить площадь, резко наблюдаемого без перефокусировки поля. Исправление же хроматических аберраций снижает окрашенность промежуточного изображения и обуславливает возможность применения окуляра простой конструкции (ХРУ уменьшается значительно, примерно в 5-7 paз). Расположение на варьируемом расстоянии за мениском материальной диафрагмы с диаметром раскрытия, равным диаметру выходного зрачка объектива, позволяет проводить оптимальным образом коррекцию астигматизма и кривизны (их перебалансировку), отклоняя ход главного луча в объективе. При этом варьируемое расстояние L позволяет осуществлять оптимальную перебалансировку астигматизма и добиться наиболее равномерного изображения на микроскопе при наблюдении конкретным наблюдателем. В случае, когда требуется получение упрощенных конструкций, роль диафрагмы может осуществлять механическая оправа выходного торца микрообъектива.
Таким образом, в заявляемом объективе достигнут новый результат, заключающийся в одновременном исправлении хроматических и монохроматических аберраций при увеличении разрешающей способности.
Одновременно исправление хроматических и монохроматических аберраций позволяет повысить информационную емкость объектива пропорционально увеличению резко наблюдаемого без перефокусирования поля зрения и пропорционального увеличения разрешающей способности.
При расчете ахроматов традиционным путем во всех случаях оставались неисправленными либо признаны, либо ХРУ, либо то и другое. Сущность изобретения поясняется чертежом, на котором представлена оптическая схема заявляемого объектива, а также приложением, в котором даны конструктивные и аберрационные выпуски конкретных вариантов объектива.
Заявляемый объектив содержит фронтальный компонент 1, компонент 2, выполненный в виде двух последовательно расположенных вдоль оптической оси двусклеенных линз, положительные компоненты которых обращены к плоскости изображения, а также расположенный за компонентом 2 компонент 3, содержащий отрицательный одиночный мениск, конструктивное исполнение которого удовлетворяет указанным в формуле соотношениям, и расположенной за ним на некотором варьируемом расстоянии L материальной диафрагмы с диаметром раскрытия, равным диаметру выходного зрачка объектива. В варианте конкретного исполнения получена целая гамма ахроматических микрообъективов с увеличенной (за счет увеличения разрешающей способности и улучшения аберрационной коррекции) информационной емкостью.
Устройство работает следующим образом: первый компонент строит увеличенное мнимое изображение предмета с уменьшенными значениями аберраций осевой точки и отрицательным значением меридиональной и сагиттальной кривизны. Компонент строит действительное изображение объекта в фокальной плоскости компонента 3. При этом вносятся отрицательные значения сферической аберрации, небольшая кривизна и значительный хроматизм положения и увеличения. Затем изображение перекрывается компонентом 3, который строит изображение на бесконечности. При этом компенсируется монохроматические и хроматические аберрации предыдущих компонентов. Соотношения, установленные в формуле, должны выполняться, так при значении R1<1,3R2 (R1>1,5R2) или d<0,7R2 (d>1,2R2) мениска в объективах будет невозможна оптимальная компенсация монохроматических аберраций, что приведет к снижению разрешающей способности, при использовании оптического материала мениска с дисперсией Ue>30 не позволит провести в объективе качественное исправление хроматических аберраций, расположение материальной диафрагмы на расстоянии, большем L примерно 7,5f' oб, не позволит сохранить стандартизованную высоту микрообъектива (в критическом случае такой диафрагмой может следить опорный торец объектива).
В рамках предлагаемого технического решения выполнены расчеты целой гаммы ахроматических объективов большого увеличения. В Приложении приведены конструктивные параметры и таблицы аберраций трех объективов. Так, получен объектив с увеличением 63x, в котором за счет улучшения аберраций внеосевых пучков (ХРУ примерно 0,3% меридиональная кривизна Z'm=-1,33 мм против Z'm примерно -15 мм в прототипе, сагиттальная кривизна Z's=-3,06 мм против Z's= 15 мм в прототипе и увеличения апертуры и соответственно разрешающей способности (c А=0,8 в прототипе до А=0,85), информационная емкость на микроскопе возросла в 5-6 раз. Получен также иммерсионный объектив с увеличением 40x. Апертура его составляет 0,75 мм, ХРУ водной иммерсии снижена до 0,3%, что повышает информационную емкость на микроскопе примерно в 1,5-2 раза, что в сочетании с уменьшенной ХРУ также повышает информационную емкость на микроскопе примерно в 1,5-2 раза.
В результате реализации предложенного решения в ахроматических объективах может быть значительно, в 5-6 раз увеличена информационная емкость на микроскопе. Это резко повысит эффективность работы на микроскопе.